Permanent Wetlands Habitat Vulnerability Assessment Summary

Overall Vulnerability

Rice Croplands	Score	Confidence
Sensitivity	Moderate (3)	High (3)
Exposure	Mod-high (4)	High (3)
Adaptive Capacity	Moderate (3)	High (3)
Vulnerability	Moderate (3)	High (3)

Sensitivity

Climate-	
driven	
Stressors	Potential Impacts
	Climate sensitivity is based primarily on changes in snowpack and storage since rice
	croplands receives most of their water from these sources during the spring and
Snowpack	summer growing season, and relatively little from precipitation.
	Large rainfall events have an immediate positive effect on the habitat, but too much
	rain falling on rice fields can make water depth a problem for foraging waterbirds,
Precipitation	and too much rain in late spring/early summer can prevent farmers from planting.
timing and	Early fall rain (e.g., September) is detrimental for rice because it interferes with
amount	harvest. The ability to flood fields post-harvest is dependent on winter rainfall.
	Periods of severe drought result in a decrease in rice croplands, but declines are
	usually delayed because stored water reserves and water management practices
Drought	slow the impact.
Heat waves,	Early heat waves have a negative impact on rice growth, with May-July heat waves
increasing	reducing growth by 6.1%. Rice requires warm temperatures; currently the Delta is too
temperatures	cool for growing rice.

Disturbance	
Regimes	Potential Impacts
	Flooding practices in rice fields are highly managed, but the timing and severity of natural
	flooding can negatively impact crops late spring flooding delays or prevents planting, can destroy young plants too late in the season for farmers to replant. Flooding deeper than 15
Flooding	cm may also limit foraging access for shorebirds
	Warmer temperatures may alter the types of diseases that affect both wildlife and
	crops via expansion into new areas or overwintering. Warm conditions may favor rice
Insects &	weevil, which can reduce crop yields by 10-25%. Mosquitos outbreaks in warmer
disease	water would lead to increased pesticide use.
	Wind is a minor issue when plants begin to break the water surface in spring and
	water, as movement can rip the plant out of the soil. Wind can also affect bird
Wind	migration and movement on ground.

Non-climate	
Stressors	Potential Impacts
Dams, levees,	Necessary for this habitat type, especially with less snowpack for water storage.
and water	Levees and water diversions are also important, as they are part of the infrastructure
diversions	to deliver the water to rice.
Commodity	Seventy percent of rice land in California can't have other crops grown on it because
prices	of the soil type, so conversion to other crops is not a huge issue.

Exposure

Projected Changes	Potential Refugia
Decreased snowpack, earlier	Wherever there is a secure source of water, which depends on
runoff, changes in precipitation	water rights and water district boundaries. Duck clubs and wildlife
(amount) causing decreased	refuges near cropland. Areas with groundwater availability and
water storage	pumping infrastructure (but not a lot of gw infrastructure in the
Urban/suburban development	Sacramento Valley). Restrictions on water transfers in giant garter
Increased drought/extreme	snake mitigation lands.
heat	
	Dependent on vulnerable water infrastructure in all areas.
Extreme flood events,	Exposure is higher in bypasses; only a small percentage of rice in
Increased flooding	that area.
Increased air temperature	Rice could be moved towards the delta to track increasing
	temperatures. Currently, the delta is mostly too cold for rice
Increased water temperature	East side of the valley is a potential refuge in near future. Longer
	term, impacts will be valley-wide and magnified during drought
	years, with no refugia remaining.
Altered stream flows	Fields where riparian water is used for irrigation are more
	vulnerable to impacts from low stream flows. Areas with off-
	stream water storage could act as refugia during both high and low
	flows.

Adaptive Capacity

Extent,	Winter-flooded rice in the northern Central Valley increased by 47% (25,000 ha)				
Integrity, and	between 1988 and 2000. Located primarily in the Sacramento Valley. The canals				
Continuity	surrounding rice cropland offer reliable aquatic habitat and movement corridors for				
	giant gartersnakes and other species.				
Resistance &	Primarily dependent on human decision-making processes based on commodity				
recovery	prices, crop health and yield, and farming/management practices. When water comes				
	back, so does rice. Incentive programs and conservation-focused policies may				
	increase resistance of flooded croplands .				
Diversity	Low habitat diversity, high species diversity- waterbird species richness in flooded				
	fields is double that in non-flooded fields.				
Management	Services of flooded rice croplands must compete with value of water. Rice as a plant is				
potential	resilient, but need to build the infrastructure for water storage to maintain rice				
	croplands in the future. Incentive programs can create pop-up wetlands during critical				
	periods for migrating and wintering birds, increasing habitat availability and quality.				